Equiangular tight frames from Paley tournaments

نویسنده

  • Joseph M. Renes
چکیده

We prove the existence of equiangular tight frames having n = 2d − 1 elements drawn from either Cd or Cd−1 whenever n is either 2k − 1 for k ∈ N, or a power of a prime such that n ≡ 3 mod 4. We also find a simple explicit expression for the prime power case by establishing a connection to a 2d-element equiangular tight frame based on quadratic residues. © 2007 Elsevier Inc. All rights reserved. AMS classification: 05B20; 42C15; 52C17

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Constructing a Large Family of Equiangular Tight Frames

We provide a new method for constructing equiangular tight frames (ETFs). This method is valid in both the real and complex settings, and shows that many of the few previously-known examples of ETFs are but the first representatives of infinite families of such frames. The construction is extremely simple: a tensor-like combination of a Steiner system and a regular simplex. It provides great fr...

متن کامل

Tremain equiangular tight frames

We combine Steiner systems with Hadamard matrices to produce a new class of equiangular tight frames. This in turn leads to new constructions of strongly regular graphs and distance-regular antipodal covers of the complete graph.

متن کامل

Tables of the existence of equiangular tight frames

A Grassmannian frame is a collection of unit vectors which are optimally incoherent. The most accessible (and perhaps most beautiful) of Grassmannian frames are equiangular tight frames (ETFs); indeed, there are infinite families of known ETFs, whereas only finitely many non-ETF Grassmannian frames are known to date. This paper surveys every known construction of ETFs and tabulates existence fo...

متن کامل

Quasi-Equiangular Frame (QEF) : A New Flexible Configuration of Frame

Frame theory is a powerful tool in the domain of signal processing and communication. Among its numerous configurations, the ones which have drawn much attention recently are Equiangular Tight Frames(ETFs) and Grassmannian Frames. These frames both have optimality in coherence, thus bring robustness and optimal performance in applications such as digital fingerprint, erasure channels, and Compr...

متن کامل

Approximate equiangular tight frames for compressed sensing and CDMA applications

Performance guarantees for recovery algorithms employed in sparse representations, and compressed sensing highlights the importance of incoherence. Optimal bounds of incoherence are attained by equiangular unit norm tight frames (ETFs). Although ETFs are important in many applications, they do not exist for all dimensions, while their construction has been proven extremely difficult. In this pa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004